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Abstract
We present calculations of spin wave dispersions for antiferromagnetic MnO, NiO and
ferromagnetic α-MnAs based on the recently developed quasiparticle self-consistent GW
method (QSGW ); we have already shown that QSGW gave a good quasiparticle picture for
MnO and NiO in comparison with optical experiments. To obtain the spin wave dispersions, we
have developed a method to calculate the transverse dynamical spin susceptibility in the
random-phase approximation. This is a general method applicable not only to QSGW , but also
to any first-principle method which gives the non-interacting (one-body) Hamiltonian to
represent quasiparticles, e.g. the Kohn–Sham Hamiltonian in the density functional theory. In
the method, we first calculate the non-interacting spin susceptibility from the supplied
non-interacting Hamiltonian; then we obtain the spin susceptibility where the size of the
effective interaction is determined so as to satisfy a sum rule. For MnO and NiO, the obtained
spin wave dispersions show good agreement with experiments, in contrast to the cases in the
local density approximation (LDA) and in the LDA + U . These results support our claim that
the independent-particle picture is powerful enough even for materials like NiO and MnO
classified to the Mott insulator, that is, the quasiparticle pictures by QSGW work well to
describe their linear responses. For α-MnAs, we find a collinear ferromagnetic ground state in
QSGW , while this phase is unstable in the LDA.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The magnetic linear response is a fundamental property of
solids. It is given by the spin susceptibility when the
spin–orbit coupling is neglected (as we will do in this
paper). The spin susceptibility is equivalent to the spin
fluctuations, as can be seen from the fluctuation–dissipation
theorem. Low-energy spin fluctuations can control some
low-energy phenomena, such as magnetic phase transitions,
and contribute to resistivity through spin-flip scattering of
electrons. Antiferro(AF)magnetic spin fluctuations can play
an important role in high-Tc superconductors [1, 2]. It is also
the central quantity entering into the description of quantum-
critical phenomena [3, 4]. We expect that reliable first-
principle methods to calculate the spin susceptibility should
give important clues to understand these phenomena. In this
paper, we concentrate on the magnetically ordered systems,
where the spin susceptibility should be dominated by spin
waves (SW) at low energy.

In spite of the recent development of such methods,
we still have a large class of systems where we can hardly
calculate the spin susceptibility (or SW), e.g. as discussed
in [5]. A typical example is MnO; Solovyev and Terakura
gave an analysis for the calculation of its SW energies [6].
Then they showed the main problem is in the non-interacting
one-body Hamiltonian H 0 from which we calculate the non-
interacting spin susceptibility. The spin wave is calculated
from the non-interacting spin susceptibility with a formula in
the random-phase approximation where the size of the effective
interaction is determined so that the SW energies get to be
zero at the wavevector q → 0 limit. H 0 given by the
local density approximation (LDA), LDA + U , or even the
optimized effective potential [7] are not adequate. In the
LDA + U case, they traced the error to a misalignment of
the oxygen 2p (O(2p)) bands relative to the Mn(3d) bands.
It is impossible to choose the U parameter to correct the
misalignment, because the U parameter can only control the
exchange splitting within 3d bands. A possibility may be
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adding some other parameter in addition to U so as to correct
the misalignment; however, such a procedure including more
parameters become less universal. This situation is somehow
similar to the case of optical response (dielectric function)
calculation for semiconductors, where H 0 given by LDA is
with too small a bandgap, and thus requires some additional
correction like a scissors operator. Our case for the spin
susceptibility for MnO is rather worse; LDA supplies too
problematic an H 0 to be corrected in a simple manner.

Another possibility is to obtain H 0 by some hybrid
functional; it has been shown that it can work as explained
below: however, it could be problematic from the view of
universality. Muscat, Wander and Harrison claimed that a
functional called B3LYP [8, 9] (containing 20% of Fock
exchange) works even for solids. However, Franchini et al
[10] showed that another functional called PBE0 is better than
B3LYP in order to obtain better agreement with experiments
as for the exchange interaction. PBE0 is a combination
of 25% of the Fock exchange with a generalized-gradient
approximation (GGA) [11]. However, such functionals could
be not so universal, mainly because the effect of screening
(and therefore the ratio of the Fock exchange) are dependent
on materials. In fact, Moreira et al [12] reported that a
hybrid functional containing 35% of Fock exchange gives the
best results for NiO; the ratio of the Fock exchange is rather
different from the case of MnO by Franchini et al. This is
somehow consistent with the latest careful examinations by
Fuchs et al [13], and Paier et al [14]; these clarify the fact
that a hybrid functional should be limited since the screening
effects (corresponding to the ratio of the Fock exchange) can be
material-dependent. These seem to indicate a difficulty to pick
up an universally applicable hybrid functional. This difficulty
becomes more problematic when we treat inhomogeneous
systems, e.g. to treat the Schottky-barrier problem, where the
screening effects are very different on the metal side and on the
semiconductor side.

Considering these facts, it is necessary to start from
good H 0 without such problems. Our recently developed
quasiparticle self-consistent GW method (QSGW ) includes
the above screened exchange effects in a satisfactory
manner [15–22]. QSGW is introduced by Faleev, van
Schilfgaarde and Kotani [15] based on the all-electron
full potential GW method [23]. QSGW determines a
reference system of H 0 representing an optimum quasiparticle
(QP) picture in the sense of Landau–Silin Fermi liquid
theory. As discussed in [19], QSGW is based on a self-
consistent perturbation theory under the assumption that some
reasonable QP picture should exist. Thus QSGW is based
on the completely different idea from that of the usual
full self-consistent GW theory which has serious theoretical
problems [19, 24]. QSGW self-consistently determines not
only H 0, but also the screened Coulomb interaction W and
the Green’s function G simultaneously.

Until now, we have shown that QSGW gives QP
energies, spin moments, dielectric functions and so on
in good agreement with experiments for a wide range of
materials. There are systematic but small disagreements with
experiments. For example, as shown in figure 1 in [17], we see

an error so that calculated bandgaps are systematically larger
than those by experiments. A recent development by Shishkin,
Marsman and Kresse [21] confirmed our conjecture [17] that
the inclusion of the electron–hole correlation effect in W will
correct the error. Their method is a simplified version of the
full Bethe–Salpeter equation (BSE) for W ; it includes only
the static and spatially local part of the first-order term in the
BSE, based on the procedure given by Sottile, Olevano and
Reining [25]. As for MnO and NiO [15, 19], the unoccupied
3d levels relative to the top of the valence band are 1–
2 eV too high in comparison with experiments; as for 4f
electron systems [16], the unoccupied 4f levels are 3–4 eV too
high. Such overestimations will also be well corrected if their
method gets to be applicable to these materials. QSGW also
shows another type of error, which appears in the localized
electrons (typically for core states); e.g. the semicore and
occupied d levels for GaAs, ZnS, Cu and so on are a little
(∼0.5 eV) too shallow relative to the top of the valence (or
to the Fermi energy) [15, 19, 21]. We guess that this error can
be due to the following reason. For simplicity, let us consider
the self-energy � for core states; then the main contribution to
the self-energy � comes when the hole in the core is running
through G in the intermediate process of � = iG × W . We
guess that the error is mainly because we do not include how
W is effectively changed when a hole in the core is running
through G (roughly speaking, W should be calculated with
adding the hole in the core for such an intermediate process);
however, it has not been numerically evaluated yet. Even
though we have observed these two types of errors in QSGW ,
we can say that overall agreements with experiments are rather
good in comparison with other available methods. We believe
that QSGW is a basis for future development of electronic
structure calculations. See [19] and its references.

In this paper, we treat spin susceptibility for MnO and
NiO with AF ordering II (AF-II) [26], and α-MnAs based on
QSGW . α-MnAs is NiAs-type grown on GaAs epitaxially,
thus it is a candidate for spintronics applications [27]. For this
purpose, we have newly developed a procedure to calculate
the dynamical spin susceptibility at zero temperature. It
is a general procedure applicable to any first-principle self-
consistent method which determines H 0 to specify the QP,
even when H 0 contains non-local potentials as in the Hartree–
Fock method. We then apply it to LDA, and to QSGW . After
we explain the procedure in section 2, we will show that the
SW energies obtained with QSGW are in good agreement
with experiments for MnO and NiO. See [19] for dielectric
functions for NiO and MnO. For MnAs, our calculation shows
that a collinear FM ground state is stable in QSGW though it
is not in LDA.

At the end of section 1, we give a discussion to justify
using the one-particle picture (band picture) of a ‘Mott
insulator’ for MnO and NiO; it is essentially given by Terakura,
Williams, Oguchi and Kübler in 1984 [26] (in the following
discussion, ‘charge transfer type’ or ‘Mott type’ does not
matter). Based on the one-particle picture, the existence of
some spin moment (or exchange splitting, equivalently) at
each cation site is very essential to make the system insulator.
This is consistent with the experimental facts that all the
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established ‘Mott insulators’ are accompanied with the AF (or
some) magnetic ordering. Thus the concept ‘Mott insulator
versus band insulator’, often referred to, is misleading, or
rather confusing. In order to keep the system insulating,
any ordering of spin moment is possible provided the system
retains a sufficiently large enough exchange splitting at each
site (we need to use the non-collinear mean field method).
In this picture, a possible metal–insulator transition at zero
temperature (e.g. considering a case to compress NiO) is
the first-order transition from a magnetic phase insulator to
the non-magnetic metal phase described by a band picture.
On the other hand, the transition at finite temperature to a
paramagnetic insulator phase occurs because of the entropy
effects due to the accumulation of SWs; then the transition
is not accompanied by the metal–insulator transition because
the exchange splitting (or local moment) at each site is kept
even above the Néel temperature TN. This picture is very
different from that assumed in [5, 28], where they emphasize
the priority of their method LDA+ U+ ‘dynamical mean field
theory (DMFT)’. In contrast to their claim, we insists that our
treatment should be prior and closer to reality for such systems,
because of the following reasons.

(i) One-particle treatment in our QSGW allows us to perform
parameter-free accurate calculations where we treat all
the electrons on the same footing; this is very critical
because the relative position of cation 3d bands to O(2p)
is important (also their hybridization; we have no SW
dispersion without hybridization). Further, we are free
from the uncontrollable double-counting problem [29]
and do not use a parameter like U which is externally
introduced by hand. In contrast, LDA + U + DMFT
carries these same problems which are in LDA + U , or
rather highly tangled. Thus it is better to take a calculation
by LDA + U + DMFT as a model in these cases. As
an example, we guess that the distribution probability of
the number of 5f electrons in δ-plutonium calculated by
LDA + U + DMFT [30] will be easily changed if we shift
the relative position (and hybridization) of the 5f band
with respect to other bands.

(ii) The DMFT at zero temperature takes into account the
quantum-mechanical on-site fluctuation which is not
included within the one-particle picture; it allows a system
to be an insulator without magnetic order. However,
we expect that such quantum-mechanical fluctuation is
not essentially important to determine its ground state
for materials like NiO and MnO. This is based on our
findings that QSGW results can well reproduce the optical
response [15, 19], and also the magnetic responses as
shown in this paper. These QSGW results are not perfect:
however, they supply us with a good enough starting
point. For example, in order to describe the d–d multiplet
intra transitions (e.g. see figure 6 of [31] by Fujimori and
Minami; they are very weak in comparison with interband
transitions), it may be easier to start from the cluster
models or so; however, parameters used in these models
will be determined by QSGW even in such a case.

(iii) At finite temperature, the DMFT can take into account
not only such quantum-mechanical fluctuations, but also

the on-site thermal fluctuations simultaneously; this is an
advantage of DMFT. However, in MnO and NiO, low-
energy primary fluctuations are limited to the transverse
spin fluctuations except phonons. These can be included in
DMFT but it is essentially described by the local-moment
disorder [32] as the thermal average of the one-particle
picture. Thus there is no advantage of DMFT if only the
thermal fluctuations are important.

2. Method for spin susceptibility calculation

In order to calculate the dynamical transverse spin suscepti-
bility, we first perform the self-consistent calculation in LDA
and in QSGW . Then we obtain a one-body non-interacting
Hamiltonian H 0 which describes the QP in the system. In the
following, we will present a method to calculate the suscepti-
bility just from H 0; because of some assumptions and condi-
tions which must be rigorously satisfied (equations (4) and (5))
shown below, we do not need to evaluate the effective interac-
tion explicitly.

We may divide first-principle methods to calculate SW
energies into three classes; (A), (B), and (C). (A) is from
the Heisenberg Hamiltonian, whose exchange parameters J
are determined from the total energy differences of a set of
different spin configurations [33–35]. (B) and (C) are based
on perturbation. (B) estimates J from static infinitesimal spin
rotations [36, 37]. We go through the Heisenberg model even
in (B). In contrast, (C) determines SW energies directly from
the poles in the transverse spin susceptibility χ+−(r, r′, t − t ′)
(defined below) in the random-phase approximation (RPA)
or time-dependent LDA (TDLDA) [38–40]. (C) gives the
spectrum including lifetime and spin-flip excitations. Because
(C) is technically difficult, (A) or (B) have been mainly
used. (B) is regarded as a simplification of (C); but real
implementations entail further approximations.

Our method belongs to (C). Our formalism is applicable
to any H 0 even if it contains non-local potential. At the
beginning, we introduce some notations to treat the time-
ordered transverse spin susceptibility:

χ+−(r, r′, t − t ′) = −i〈T (Ŝ+(r, t)Ŝ−(r′, t ′))〉. (1)

〈· · ·〉 denotes the expectation value for the ground state; T (· · ·)
means time ordering and Ŝ±(r, t) = Ŝx(r, t) ± iŜ y(r, t) are
the Heisenberg operators of spin density. Since we assume
collinear magnetic ordering for the ground state, we have
〈Ŝx(r, t)〉 = 〈Ŝ y(r, t)〉 = 0; 2〈Ŝz(r, t)〉 = M(r) = n↑(r) −
n↓(r). n↑(r) and n↓(r) mean up and down electron densities.
Ma(r) is the component of M(r) on the magnetic sites a in a
unit cell. The Fourier transform of χ+− is

χ+−(T+r, r′, ω) = 1

N

∑

q

eiqTχ+−
q (r, r′, ω), (2)

where T is a lattice translation vector and N is the number of
sites. r, r′ are limited to a unit cell.

Next we derive two conditions equations (4) and (5) below,
which χ+− rigorously satisfies. Taking the time derivative of
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equation (1), we obtain

∂

∂ t ′

∫
d3r ′ χ+−(r′, r, t ′ − t)

=
∫

d3r ′ 〈T ([[Ĥ , Ŝ+(r′, t ′)], Ŝ−(r, t)])〉

− i
∫

d3r ′ 〈[Ŝ+(r′, t ′), Ŝ−(r, t)]〉δ(t ′ − t), (3)

where [A, B] = AB − B A. Ĥ denotes the total Hamiltonian
of the system. We have used ∂ Ŝ+(r′,t ′)

∂ t ′ = i[Ĥ , Ŝ+(r′, t ′)].
We assume Ĥ has rotational symmetry in spin space, so that
[Ĥ ,

∫
d3r ′ Ŝ+(r′, t ′)] = 0. Then the first term in the right-

hand side is zero. The second term reduces to M(r) because
[Ŝ+(r′, t), Ŝ−(r, t)] = 2Ŝz(r, t)δ(r − r′). Thus equation (3) is
reduced to be

∫

�

d3r ′ χ+−
q=0(r

′, r, ω) = M(r)
ω

, (4)

where � denotes the unit-cell volume. Note that equation (4)
is satisfied for any ω. At ω → 0, this means that
M(r) is the eigenfunction of χ+−

q=0(r, r′, ω) with divergent
eigenvalue; this is because a magnetic ground state is
degenerate for homogeneous spin rotation. Another condition
is the asymptotic behavior as ω → ∞. It is given as

χ+−(r′, r, ω) → M(r)
ω

δ(r − r′) + O(1/ω2). (5)

This can be easily derived from the spectrum representation of
χ+−. We use equations (4) and (5) to determine the effective
interaction Ū in the following.

As in [41], we define the effective interaction U(r, r′, ω)

as the difference between (χ+−)−1 and the non-interacting
counterpart: (χ0+−)−1(r, r′, ω):

(χ+−)−1 = (
χ0+−)−1 + U. (6)

In TDLDA, U is the second derivative of the exchange–
correlation energy, U(r, r′) = −δ2 Exc/δS+(r)δS−(r′) =
Ixc(r)δ(r − r′), which is local U(r, r′) ∝ δ(r − r′),
ω-independent and positive. Then we can show that
χ+− in TDLDA satisfies condition equations (4) and (5)
automatically [42]. In the case of H 0 containing non-local
potentials (e.g. in the case of the Hartree–Fock method), U
is no longer independent of ω. This is because the natural
expansion of χ+− in the many-body perturbation theory
requires solving the Bethe–Salpeter equation for the two-
body propagator χ+−(r1, r2; r3, r4, ω). Thus U defined in
equation (6) is not directly identified as a kind of diagram.
Reference [40] did not pay attention to this point. We can
calculate χ0+− in equation (6) as

χ0+−
q (r, r′, ω) =

occ∑

kn↓

unocc∑

k′n′↑

	∗
kn↓(r)	k′n′↑(r)	∗

k′n′↑(r′)	kn↓(r′)
ω − (εk′n′↑ − εkn↓) + iδ

+
unocc∑

kn↓

occ∑

k′n′↑

	∗
kn↓(r)	k′n′↑(r)	∗

k′n′↑(r′)	kn↓(r′)
−ω − (εkn↓ − εk′n′↑) + iδ

, (7)

where k′ = q + k. χ0+−(r, r′, ω = 0) is a negative definite
matrix. Our definition of χ+− and also χ0+− can be different

in sign from other definitions in the literature because we start
from equation (1).

In order to realize an efficient computational method, we
assume that the magnetization is confined to magnetic atomic
sites, and we explicitly treat only a degree of freedom of spin
rotation per each site. Then we can determine U with the help
of equations (4) and (5) as in the following. As a choice to
extract the degrees of freedom, we consider a matrix D(q, ω)

as

(D(q, ω))aa′ =
∫

a
d3r

∫

a′
d3r ′ ēa(r)χ+−

q (r, r′, ω)ēa′(r′), (8)

and D0(q, ω) defined in the same manner. The dimension of
the matrix D(q, ω) is the number of magnetic sites. Here we
define ea(r) = Ma(r)/Ma where Ma = ∫

a d3r Ma(r); and
define ēa(r) so that ēa(r) ∝ ea(r) and

∫
d3r ēa(r)ea(r) =

1; thus ēa(r) = ea(r)/
∫

a d3r (ea(r))2. Corresponding to
equation (6), we define the effective interaction (Ū(q, ω))aa′

as
(D(q, ω))−1 = (

D0(q, ω)
)−1 + Ū(q, ω). (9)

For the calculation of D0(q, ω) from equation (7), we use
the tetrahedron technique [19], which allows us to use fewer
k points in the first Brillouin zone (BZ) than those required
for the sampling method [40]. Ū defined in equation (9)
should include all the downfolded contributions from all the
other degrees of freedom. We now assume that Ū is q-
independent and site-diagonal, so that it can be written as
Ūaa′(q, ω) = Ua(ω)δaa′ . Since equation (4) reduces to a
constraint

∑
a′(D(q = 0, ω))a′a = Ma/ω, we determine

Ūa(ω) from

Ūa(ω) = ω

Ma
δaa′ −

(∑
b Mb(D0(q = 0, ω))−1

ba

Ma

)
δaa′.

With this Ūa(ω) for equation (9), we finally have

(D(q, ω))−1 = ω

Ma
δaa′ − J̄ (q, ω), (10)

J̄(q, ω) = −(
D0(q, ω)

)−1

+
(∑

b Mb(D0(q = 0, ω))−1
ba

Ma

)
δaa′ . (11)

Equation (5) reduces to (D(q, ω))−1
a′a → ω

Ma
δaa′ at ω →

∞; (D(q, ω))−1
a′a given by equation (10) gives this correct

asymptotic behavior. Note that we determine U just from the
requirement equation (4) because of our approximations ‘on-
site only U ’ and ‘a basis per magnetic site’. If we need to
go beyond such approximations (e.g. multiple basis per site),
it will be necessary to introduce additional information, e.g. a
part of χ(q, ω = 0) evaluated by numerical linear-response
calculations (perform the QSGW self-consistent calculations
with bias fields). By Fourier transformation, we can transform
(D(q, ω))a′a into DR R′(ω); the same is also for D0, J and so
on. Here R = Ta is the composite index to specify an atom in
the crystal. For later discussion we define

J (q, ω) = −(D0(q, ω))−1 + δaa′

D0
aa(ω)

, (12)

4
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where D0
aa(ω) is shorthand for D0

TaTa(ω); it is T-independent.
The second term in equation (12) is included just in order to
remove the on-site term from J . Then equation (11) can be
written as

J̄ (q, ω) = J (q, ω) −
(∑

b Mb Jba(q = 0, ω)

Ma

)
δaa′ . (13)

Here, the second term (on-site term) in equation (12) is
irrelevant because of the cancellation between two terms in
equation (13).

The preceding development for (D(q, ω))−1 facilitates a
comparison with the Heisenberg model, whose Hamiltonian is
H = − ∑

R

∑
R′ JH

R R′ SR ·SR′ (R = Ta). As shown in the
appendix, the inverse of the susceptibility in the Heisenberg
model is

(DH(q, ω))−1 = ω

Ma
δaa′ − J̄H(q), (14)

where Ma = |2SR|. Let us compare equations (14) with (10).
This J̄H

aa′(q) is given by equation (A.9), which is almost the
same as equation (13); only the difference is whether we use
JH or J . This suggests how to construct the Heisenberg
model which reproduces equation (10) as good as possible; a
possibility is that we simply assign J (q, ω = 0) (neglecting
the ω dependence) as JH(q). We have confirmed that this
approximation is good enough to reproduce SW energies in
the case for MnO and NiO. However, it is not true in the
case of α-MnAs; then we have used another procedure given
by Katsnelson and Lichtenstein [42]: we identify J (q, ω =
(SW energy at q)) as JH. This construction exactly reproduces
SW energies calculated from Dq,ω.

As a further approximation to calculate J (q, ω = 0), we
can expand it in real space as (omit ω for simplicity)

−JR R′ = (D0
R R′)

−1 − δR R′

D0
R

= (D0
RδR R′ + D0,off

R R′ )
−1 − δR R′

D0
R

≈ 1

D0
R

D0,off
R R′

1

D0
R′

, (15)

where we use equation (12); we use notation that the on-site
part D0

R = D0
R R and the off-site part D0off

R R′ = D0
R R′ −D0

R R′δR R′ .
Here we have used the assumption that Doff

R R′ are small in
comparison with the on-site term D0

R . This approximation
corresponds to the usual second-order perturbation scheme
of the total energy; if the spin rotation perfectly follows
the rotation of the one-particle potential, 1

D0
R

is trivial; it is

equal to the difference of the one-particle potential between
spins (exchange–correlation potential in the case of the density
functional theory) because 1

D0
R

is the inverse linear response

to determine the one-particle potential for given spin rotation.
Essentially the same equation as equation (15) was used
in [36, 37]. In some cases, this approximation is somehow
mixed up with the ‘long wave approximation’ to expanding
J around D0(q = 0) [41]; however, they should be
differentiated. In order to have a rough estimate of JR R′ , we can
further reduce this to the two-site model as originally presented
by Anderson and Hasegawa [43, 44]. For an AF magnetic pair
(half-filled case), we obtain the following estimate:

JR R′ ≈ − 1

DR
D0,off

R R′
1

DR′
∼ − 4t2

�Eex M
, (16)

Table 1. Magnetic parameters calculated by QSGW and LDA (in
parentheses). Muffin-tin radii R for cations were taken to be 2.48
(MnO), 2.33 (NiO), and 2.42 (MnAs) au. Ma is the spin moment
within the muffin-tin. Our approximation is equivalent to the
assumption for U as U(r, r′, ω) = ∑

a (U 0
a + ωU 1

a + · · ·)ea(r)ea(r′)
in equation (6). Then U 0

a is written as
U 0

a = ∫
a d3r

∫
a d3r ′ ea(r)ea(r′)U(r, r′, ω = 0). Exchange

parameters J1+, J1−, J2 are shown for MnO and NiO. Total spin
moments for MnAs are 7.00 μB/cell (QSGW ) and 5.89 μB/cell
(LDA). Our definition of J1+, J1−, J2 follows that of [6], except we
distinguish J1+ and J1− [45].

MnO NiO α-MnAs

U 0
a (eV) 2.43 (0.95) 4.91 (1.64) 1.08 (0.93)

Ma (μB) 4.61 (4.35) 1.71 (1.21) 3.51 (3.02)
J1+ (meV) −2.8 (−14.7) −0.77 (0.3)
J1− −4.8 (−14.7) −1.00 (0.3)
J2 −4.7 (−20.5) −14.7 (−28.3)
TN or Tc (K) 111 275 510
(Experiment) 122a 523a 400

a Reference [48].

where t denotes the transfer integral and �Eex is the on-site
exchange splitting. We have used DR ∼ M

�Eex
and DR R′ ∼

M
�Eex

× ( 2t
�Eex

)2.
Some additional comments. Our formalism here is not

applicable to the non-magnetic systems, where M(r) = 0
everywhere. Then we need to determine U in other ways.
A possibility is utilizing the static numerical linear-response
calculations; it gives the information of the static (ω = 0) part
of χ+−

q directly (easiest spin-polarization mode at each site).
Then it will be possible to determine U from such information
together with some additional assumptions. In the case of
systems like Gd where the d shell and f shell can polarize
separately, we may need to extend our formulation so as to
include non-locality of U (e.g. U can be parameterized as Ui jkl

where i, j, k, l are atomic eigenfunction basis for the d or f
channel).

3. Result and discussion

3.1. MnO and NiO

Figure 1 shows the calculated SW energies ω(q) for MnO and
NiO. (We used 1728 k-points in the BZ for all calculations,
including MnAs.) ω(q) calculated from the LDA is too large,
as earlier workers have found [5, 6]. The detailed shape of
ω(q) is different from earlier work, however: in [5], peaks
in ω(q) occur near 200 meV for NiO, much lower than what
we find. QSGW predicts ω(q) in good agreement with
experimental data.

The difference of results between QSGW and LDA is
understood by equation (16). JR R′ between nearest AF sites
essentially determine the SW energies (exactly speaking, three
J parameters as shown in table 1). The LDA severely
underestimates �Eex. This can be corrected by LDA +
U : however, Solovyev and Terakura [6] showed that it
fails to reproduce SW energies as we mentioned in the
introduction. This means that the transfer t is also wrong in
LDA + U ; in fact, t is through the hybridization with O(2p)

5
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Figure 1. Spin wave dispersion ω(q) for MnO and NiO calculated from the LDA and QSGW . The solid line without symbols in MnO or dots
in NiO (red) are experimental values [45, 46]. We used experimental lattice constants 4.55 and 4.17 Å for MnO and NiO, respectively.

Figure 2. Imaginary part of Tr[χ+−(k, ω)] for QSGW . Data are for
6 k-points, all along the �−K line. The k-point is i/6 K (thus i = 6
falls at K ). Peak positions and full width at half-maxima are shown
in the �−K line of figure 3.

(superexchange). In other words, the agreements with SW
experiments in QSGW indicates that both of them are well
described by QSGW . Together with the fact that QSGW
showed good agreements with optical experiments [15, 19] for
MnO and NiO, we claim that our one-particle picture given by
QSGW captures the essence of the physics for these systems.
Our claim here is opposite to [5, 28] where they claimed that
the one-particle picture cannot capture the essence.

3.2. α-MnAs

Because α-MnAs is observed to be an FM with a moment of
3.4 μB [47], we construct H 0 assuming an FM ground state.
Inspection of the density of states (DOS) in figure 4, shows
that QSGW predicts �Eex ∼ 1.0 eV larger the LDA. This
difference is reflected in the spin moment: Ma = 3.51 μB in
QSGW and 3.02 μB in LDA. Figure 2 shows the imaginary
part of Tr[χ+−(q, ω)] along the �−K line. Sharp SW peaks
are seen at small q; they broaden with increasing q. Figure 3
shows the peak positions, corresponding to SW energies ω(q).

Figure 3. Spin wave dispersion ω(q) in α-MnAs. QSGW results
(circles) are enveloped by hatched regions, which indicate the full
width at half-maximum of the spin wave, and is a measure of the rate
of SW decay. LDA (squares) predicts negative SW energies around
K , indicating that the collinear FM ground state is not stable.
The experimental lattice constants a = 3.70 Å and c/a = 1.54
were used.

Hatchmarks indicate the full width at half-maximum, extracted
from data such as that depicted in figure 2. This corresponds
to the inverse lifetime of a SW which decays into spin-flip
excitations. (Our calculation gives no width for MnO and NiO,
because of the large gap for the spin-flip excitations.) SW
peaks are well identified all the way to the BZ boundary. We
find that the collinear FM ground state is not stable in the LDA:
as figure 3 shows, ω(q) < 0 around K . (Among all possible
collinear configurations, the FM state may be the most stable.
We did not succeed in finding any collinear configuration more
stable than the FM one. A similar conclusion was drawn for
the PBE GGA functional [34].) On the other hand, QSGW
predicts a stable collinear ground state, that is, ω(q) > 0
everywhere. However, even in QSGW , the SW energies are
still low around K , which is a vector that connects nearest-
neighbor Mn sites in the x–y plane. If this SW energy is
further lowered for some reason, we may have a frustrated spin
system because of the triangle (honeycomb) lattice of the Mn
sites. This could be related to the anomalous phase diagram

6
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Figure 4. Quasiparticle DOS for α-MnAs. Lighter hatchings
indicate total DOS; darker (black and red) hatchings indicate the
partial d contribution, whose centers of gravity are shown by arrows.
The Fermi energy is at zero.

of MnAs, which can easily occur through the small changes in
lattice structure associated with higher-temperature phases.

We can qualitatively understand the difference of SW
energies between QSGW and LDA from the difference of
�Eex. Let us consider the energy difference of FM and AFM
states for a two-site model as illustrated in [44]. Then the
energy gain of an FM pair is independent of �Eex when some
of the majority states are occupied (less than half-filling); we
measure the energy from the majority spin’s atomic level as
the zero. In contrast, the gain of a AFM pair increases with
decreasing �Eex. Overall, the LDA with its smaller �Eex

should contain a stronger AFM tendency.

3.3. Determined parameters and related quantities

Table 1 shows the effective interaction U 0
a (interaction between

unit spins). In NiO and MnO, U 0
a as calculated by LDA is

much smaller than the QSGW result. This is because the LDA
underestimates bandgaps in NiO and MnO, thus overestimates
the screening. U 0

a is twice as large in NiO than in MnO.
This is because Ma(r) is more localized in NiO; in fact, the
QSGW dielectric constants ε∞ are similar (ε∞ = 3.8 (MnO)
and 4.3 (NiO) [19]), suggesting that the screened Coulomb
interaction U(r, r′) is similar in the two materials. U 0

a is
smaller in MnAs than in MnO, because it is a metal.

For MnO and NiO, we confirmed that JR R′ is non-
negligible only for the three nearest neighbors (NN) (table 1).
J1+ and J1− refer to the first NN, spins parallel and spins
antiparallel, respectively. J2 refers to the second NN [45]. J1+
and J1− by QSGW are quite different in MnO, while in LDA
J1+ ≈ J1−, resulting in ω(M) ≈ 0 in that case.

For MnAs in QSGW , the expansion coefficients written

as (M−1)aa′ ≡ ∂(Dqω)−1
aa′

∂ω
|ω=0 is rather dependent on q; nor is

(M−1)aa′ ∝ δaa′ . Off-diagonal contributions of (M−1)aa′ give
∼10% contribution to SW energies. In addition, its inverse
of the diagonal element 1/(M−1)aa is reduced by ∼0.5μB at

certain points in the BZ. In this case, mapping to a Heisenberg
Hamiltonian has a less clear physical meaning.

3.4. Calculation of TN and Tc based on the Heisenberg model

From the obtained JR R′ , we estimated TN (Tc for MnAs) for
QSGW (table 1) using the cluster variation method adapted to
the Heisenberg model [49], which assumes classical dynamics
of spins under H. In NiO, the calculated TN is only
∼50% of experiment. There are two important effects that
explain the discrepancy: (a) QSGW overestimates the d–d
exchange splitting [17, 19] and (b) is the classical treatment
of quantum dynamics of spins under H. Both effects will
increase TN. Considering that QSGW well reproduces SW
energies (figure 1), the errors connected with (a) would not
seem to be so serious in MnO and NiO. (b) can be rather
important, especially when the local moment is small. This is
a general problem as discussed in [5]: Heisenberg parameters
that reproduce SW energies well in NiO do not yield a
correspondingly good TN. If we multiply our classical TN

by a factor S(S + 1)/S2 ≈ 1.86 (as 2S = Ma = 1.71),
which is the ratio of quantum to classical TN in mean field
theory, we have better agreement with experiment. This is
what Hutching et al used [46]. On the other hand, evaluation
of the quantum Heisenberg model using a Green’s function
technique shows that the mean field theory rather strongly
overestimates quantum corrections [50]. Also, TN is already
close to the experimental value in MnO. This is explained in
part because the correction (b) is less important in MnO, since
S is larger. Further, we have large contributions to TN from
J1± in MnO, but not in NiO. Around TN, J1+ and J1− will
tend to approach some average value, which reduces ω(q)

and therefore TN (recall ω(M) = 0 when J1+ = J1−). The
temperature dependence of J is not accounted for here.

JR R′ exhibits long-ranged, oscillatory behavior in MnAs:
its envelope falls off as |R−R′|3 as predicted by RKKY theory
for a metal. Consequently, it is not so meaningful to estimate
Tc from just a few NN, as was done recently [34, 35]. Shells up
to 25th nearest neighbors are required to converge Tc to within
5% or so. The calculated Tc is 110K too high in comparison
with experiment. Taking (a) into account will improve the
agreement; however, there are many factors that make a precise
calculation very difficult. We also need to take (b) into
account; in addition, other factors, such as assumptions within
the Heisenberg model, may give non-negligible contributions.

In conclusion, we present a simple method to calculate
spin susceptibility, and applied it in the QSGW method.
SW energies for MnO and NiO are in good agreement with
experiments; in α-MnAs the FM ground state is stable,
which also agrees with experiment (to our knowledge, no SW
energies have been published for α-MnAs). LDA results come
out very differently in each material. By mapping to the
Heisenberg model, we estimated TN or Tc. We found some
disagreement with experiments and discussed some possible
explanations.

Acknowledgments

We thank M I Katsnelson, W R Lambrecht, and V P Antropov
for valuable discussions. This work was supported by DOE

7



J. Phys.: Condens. Matter 20 (2008) 295214 T Kotani and M van Schilfgaarde

contract DE-FG02-06ER46302. We are also indebted to the
Ira A. Fulton High Performance Computing Initiative.

Appendix. Static J(q) calculation—Heisenberg
model

We derive the linear response to an external magnetic field B
for the Heisenberg model, whose Hamiltonian is given as

H = −
∑

Ta

∑

T′a′
JTaT′a′STa ·ST′a′ + gμB

∑

Ta

STa ·BTa, (A.1)

where STa is the spin at Ta (T is for primitive cell, a specify
the magnetic site in a cell). JTaTa = 0. JTaT′a′ = JT′a′Ta . The
equation of motion −ih̄ṠTa = [H, STa] is written as

h̄ṠTa = STa ×
(

2
∑

T′a′
JTaT′a′ST′a′ − gμBBTa

)
. (A.2)

We introduce gμBB = 2b and STa = S0
Ta + �STa . S0

Ta is the
static spin configuration. Then equation (A.2) reduces to

h̄�̇STa = S0
Ta ×

(
2
∑

T′a′
JTaT′a′�ST′a′

)
+ �STa

×
(

2
∑

T′a′
JTaT′a′ST′a′

)
− 2S0

Ta × bTa

=
∑

T′a′

(
2S0

Ta JTaT′a′
) × �ST′a′ −

(
2
∑

T′a′
JTaT′a′S0

T′a′

)

× �STa − 2S0
Ta × bTa . (A.3)

Introducing the Fourier transform, �STa = 1
N

∑
k �Sa(k)

eik(T+a), equation (A.3) reduces to

h̄�̇Sa(k) =
∑

a′

(
2S0

a Jaa′(k) −
(

2
∑

a′′
Jaa′′(0)S0

a′′

)
δaa′

)

× �Sa′(k) − 2S0
a × ba(k). (A.4)

Assuming �Sa(k) ∝ e−iωt/h̄ , we have

∑

a′

(
iωδaa′

2
+ S0

a Jaa′(k) −
(

∑

a′′
Jaa′′(0)S0

a′′

)
δaa′

)

× �Sa′(k) = S0
a × ba(k). (A.5)

Let us consider the collinear ground state. Then S0
a = Saez

(Sa is the size of spin, including sign). We have
∑

a′

(
iωδaa′

2Sa

)
�Sa′(k)

+
∑

a′

(
Jaa′(k) −

(
∑

a′′

1

Sa
Jaa′′(0)Sa′′

)
δaa′

)
ez

× �Sa′(k) = ez × ba(k). (A.6)

Using S = S+ ex −iey

2 + S− ex +iey

2 + Szez , and ez × (ex ± iey) =
∓i(ex ± iey) we have

∑

a′

(
ωδaa′

2Sa
− J̄aa′(k)

)
S+

a′ (k) = b+
a (k). (A.7)

∑

a′

(
ωδaa′

2Sa
+ J̄aa′(k)

)
S−

a′ (k) = b−
a (k), (A.8)

where

J̄aa′(k) = Jaa′(k) −
(

∑

a′′

1

Sa
Jaa′′(0)Sa′′

)
δaa′. (A.9)

Only the difference between J̄aa′(k) and Jaa′(k) are diagonal
parts. These are determined so that

∫
d3k Jaa(k) = 0.

Equation (A.7) is the same as equation (14).
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